Neural correlates of task-related changes in physiological tremor.

نویسندگان

  • Christopher M Laine
  • Francesco Negro
  • Dario Farina
چکیده

Appropriate control of muscle contraction requires integration of command signals with sensory feedback. Sensorimotor integration is often studied under conditions in which muscle force is controlled with visual feedback. While it is known that alteration of visual feedback can influence task performance, the underlying changes in neural drive to the muscles are not well understood. In this study, we characterize the frequency content of force fluctuations and neural drive when production of muscle force is target guided versus self guided. In the self-guided condition, subjects performed isometric contractions of the first dorsal interosseous (FDI) muscle while slowly and randomly varying their force level. Subjects received visual feedback of their own force in order to keep contractions between 6% and 10% of maximum voluntary contraction (MVC). In the target-guided condition, subjects used a display of their previously generated force as a target to track over time. During target tracking, force tremor increased significantly in the 3-5 and 7-9 Hz ranges, compared with self-guided contractions. The underlying changes in neural drive were assessed by coherence analysis of FDI motor unit activity. During target-guided force production, pairs of simultaneously recorded motor units showed less coherent activity in the 3-5 Hz frequency range but greater coherence in the 7-9 Hz range than in the self-guided contractions. These results show that the frequency content of common synaptic input to motoneurons is altered when force production is visually guided. We propose that a change in stretch-reflex gain could provide a potential mechanism for the observed changes in force tremor and motor unit coherence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minocycline Mitigation of Tremor Syndrome and Defect of Cognitive and Balance Induced by Harmaline

Introduction: Minocycline has anti-inflammatory, anti-apoptotic, and anti-oxidant effects. Preclinical data suggest that minocycline could be beneficial for treating common neurological disorders, including Parkinson disease and multiple sclerosis. Methods: In this study, the effects of minocycline on harmaline-induced motor and cognitive impairments were studied in male Wistar rats. The rats ...

متن کامل

Exploring Neural Correlates of Different Dimensions in Drug Craving Self-Reports among Heroin Dependents

Introduction: Drug craving could be described as a motivational state which drives drug dependents towards drug seeking and use. Different types of self-reports such as craving feeling, desire and intention, wanting and need, imagery of use, and negative affect have been attributed to this motivational state. By using subjective self-reports for different correlates of drug craving along ...

متن کامل

Postmovement changes in the frequency and amplitude of physiological tremor despite unchanged neural output.

Active or passive movement causes a temporary reduction in muscle stiffness that gradually returns to baseline levels when the muscle remains still. This effect, termed muscle thixotropy, alters the mechanical properties of the joint around which the muscle acts, reducing its resonant frequency. Because physiological tremor is affected by joint mechanics, this suggests that prior movement may a...

متن کامل

Neural Correlates of Craving in Methamphetamine Abuse

Introduction: Methamphetamine is a powerful psychostimulant that causes significant neurological impairments with long-lasting effects and has provoked serious international concerns about public health. Denial of drug abuse and drug craving are two important factors that make the diagnosis and treatment extremely challenging. Here, we present a novel and rapid noninvasive method...

متن کامل

Post - movement changes in the frequency and amplitude of 1 physiological tremor despite unchanged neural output

22 Active or passive movement causes a temporary reduction in muscle stiffness which 23 gradually returns to baseline levels when the muscle remains still. This effect, 24 termed muscle thixotropy, alters the mechanical properties of the joint around 25 which the muscle acts, reducing its resonant frequency. Since physiological tremor is 26 affected by joint mechanics, this suggests that prior ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 110 1  شماره 

صفحات  -

تاریخ انتشار 2013